About Me

I am a Postdoctoral Research Associate at the Geospatial Sciences Center of Excellence (GSCE), South Dakota State University, working with Prof. Hankui Zhang. My work centers on harnessing mid‑to‑high resolution remote sensing data and deep learning techniques for quantitative parameter retrieval, land‑cover classification, and time‑series reconstruction.

Research Interests:

  • Harmonized Landsat & Sentinel‑2 time‑series reconstruction
  • Intelligent super‑resolution and semantic segmentation
  • Unsupervised deep learning for surface water mapping
  • Soil Moisture retrieval

Education

  • Ph.D., Photogrammetry & Remote Sensing, Wuhan University
  • B.Sc., Geographic Information Science, Central China Normal University

Selected Publications

  • Zhang, Hankui K., Yu Shen, Xiaoyang Zhang, Junjie Li, Zhengwei Yang, Yijia Xu, Chen Zhang, Liping Di, and David P. Roy. “Robust and timely within-season conterminous United States crop type mapping using Landsat Sentinel-2 time series and the transformer architecture.” Remote Sensing of Environment 329 (2025): 114950.
  • Wei Xiaobing, Junjie Li, Xucai Zhang, Hongkai Gu, Nico Van de Weghe, and Haosheng Huang. “An innovative framework combining a CNN-Transformer multiscale fusion network and spatial analysis for cycleway extraction using street view images.” Sustainable Cities and Society (2025): 106384.
  • Wang Xi, Wen Zhang, Junjie Li, Zhe Wang, Zhen Zhang, Hui Wang, Yanjiao Song et al. “A normalized small waterbody size transition index for remote sensing drought monitoring.” Journal of Hydrology (2025): 133559.
  • Song Yanjiao, Linyi Li, Yun Chen, Junjie Li, Zhe Wang, Zhen Zhang, Xi Wang, Wen Zhang, and Lingkui Meng. “GCT-GF: A generative CNN-transformer for multi-modal multi-temporal gap-filling of surface water probability.” International Journal of Applied Earth Observation and Geoinformation 141 (2025): 104596.
  • Li Junjie, Linyi Li, Yanjiao Song, Jiaming Chen, Zhe Wang, Yi Bao, Wen Zhang, and Lingkui Meng. “A robust large-scale surface water mapping framework with high spatiotemporal resolution based on the fusion of multi-source remote sensing data.” International Journal of Applied Earth Observation and Geoinformation 118 (2023): 103288.
  • Li Junjie, Yizhuo Meng, Chongxin Tao, Zhen Zhang, Xining Yang, Zhe Wang, Xi Wang, Linyi Li, and Wen Zhang. “ConvFormerSR: Fusing transformers and convolutional neural networks for cross-sensor remote sensing imagery super-resolution.” IEEE Transactions on Geoscience and Remote Sensing 62 (2023): 1-15.
  • Chen Jia, Fengmin Hu, Junjie Li, Yijia Xie, Wen Zhang, Changqing Huang, and Lingkui Meng. “Evaluation of SMAP-enhanced products using upscaled soil moisture data based on random forest regression: A case study of the Qinghai–Tibet Plateau, China.” ISPRS International Journal of Geo-Information 12, no. 7 (2023): 281.
  • Li Junjie, Yizhuo Meng, Yuanxi Li, Qian Cui, Xining Yang, Chongxin Tao, Zhe Wang, Linyi Li, and Wen Zhang. “Accurate water extraction using remote sensing imagery based on normalized difference water index and unsupervised deep learning.” Journal of Hydrology 612 (2022): 128202.
  • Tao Chongxin, Yizhuo Meng, Junjie Li, Beibei Yang, Fengmin Hu, Yuanxi Li, Changlu Cui, and Wen Zhang. “MSNet: Multispectral semantic segmentation network for remote sensing images.” GIScience & Remote Sensing 59, no. 1 (2022): 1177-1198.
  • Li Junjie, Lingkui Meng, Beibei Yang, Chongxin Tao, Linyi Li, and Wen Zhang. “LabelRS: An automated toolbox to make deep learning samples from remote sensing images.” Remote Sensing 13, no. 11 (2021): 2064.

Conferences

  • 13th International Conference on Agro-Geoinformatics (Agro-Geoinformatics 2025), Boulder, CO, USA
  • IEEE International Geoscience and Remote Sensing Symposium (IGARSS)

Academic Service

  • Manuscript Reviewer for International Journal of Applied Earth Observation and Geoinformation, IEEE TGRS, Remote Sensing, Journal of Big Data, Scientific Reports, Computational Urban Science, Environmental Monitoring and Assessment, et al.

Contact

  • ✉️ junjie.li@sdstate.edu
  • 🌐 https://junjieliwhu.github.io